19 research outputs found

    Fully statistical neural belief tracking

    Get PDF
    This paper proposes an improvement to the existing data-driven Neural Belief Tracking (NBT) framework for Dialogue State Tracking (DST). The existing NBT model uses a hand-crafted belief state update mechanism which involves an expensive manual retuning step whenever the model is deployed to a new dialogue domain. We show that this update mechanism can be learned jointly with the semantic decoding and context modelling parts of the NBT model, eliminating the last rule-based module from this DST framework. We propose two different statistical update mechanisms and show that dialogue dynamics can be modelled with a very small number of additional model parameters. In our DST evaluation over three languages, we show that this model achieves competitive performance and provides a robust framework for building resource-light DST models

    Stochastic Language Generation in Dialogue using Recurrent Neural Networks with Convolutional Sentence Reranking

    Full text link
    The natural language generation (NLG) component of a spoken dialogue system (SDS) usually needs a substantial amount of handcrafting or a well-labeled dataset to be trained on. These limitations add significantly to development costs and make cross-domain, multi-lingual dialogue systems intractable. Moreover, human languages are context-aware. The most natural response should be directly learned from data rather than depending on predefined syntaxes or rules. This paper presents a statistical language generator based on a joint recurrent and convolutional neural network structure which can be trained on dialogue act-utterance pairs without any semantic alignments or predefined grammar trees. Objective metrics suggest that this new model outperforms previous methods under the same experimental conditions. Results of an evaluation by human judges indicate that it produces not only high quality but linguistically varied utterances which are preferred compared to n-gram and rule-based systems.Comment: To be appear in SigDial 201

    Specialising Word Vectors for Lexical Entailment

    Get PDF
    We present LEAR (Lexical Entailment Attract-Repel), a novel post-processing method that transforms any input word vector space to emphasise the asymmetric relation of lexical entailment (LE), also known as the IS-A or hyponymy-hypernymy relation. By injecting external linguistic constraints (e.g., WordNet links) into the initial vector space, the LE specialisation procedure brings true hyponymy-hypernymy pairs closer together in the transformed Euclidean space. The proposed asymmetric distance measure adjusts the norms of word vectors to reflect the actual WordNet-style hierarchy of concepts. Simultaneously, a joint objective enforces semantic similarity using the symmetric cosine distance, yielding a vector space specialised for both lexical relations at once. LEAR specialisation achieves state-of-the-art performance in the tasks of hypernymy directionality, hypernymy detection, and graded lexical entailment, demonstrating the effectiveness and robustness of the proposed asymmetric specialisation model

    Policy committee for adaptation in multi-domain spoken dialogue systems

    Get PDF
    Moving from limited-domain dialogue systems to open domain dialogue systems raises a number of challenges. One of them is the ability of the system to utilise small amounts of data from disparate domains to build a dialogue manager policy. Previous work has focused on using data from different domains to adapt a generic policy to a specific domain. Inspired by Bayesian committee machines, this paper proposes the use of a committee of dialogue policies. The results show that such a model is particularly beneficial for adaptation in multi-domain dialogue systems. The use of this model significantly improves performance compared to a single policy baseline, as confirmed by the performed real-user trial. This is the first time a dialogue policy has been trained on multiple domains on-line in interaction with real users.The research leading to this work was funded by the EPSRC grant EP/M018946/1 ”Open Domain Statistical Spoken Dialogue Systems”.This is the author accepted manuscript. The final version is available from IEEE via http://dx.doi.org/10.1109/ASRU.2015.740487

    Adversarial propagation and zero-shot cross-lingual transfer of word vector specialization

    Get PDF
    Semantic \specialization is a process of fine-tuning pre-trained distributional word vectors using external lexical knowledge (e.g., WordNet) to accentuate a particular semantic relation in the specialized vector space. While post-processing specialization methods are applicable to arbitrary distributional vectors, they are limited to updating only the vectors of words occurring in external lexicons (i.e., seen words), leaving the vectors of all other words unchanged. We propose a novel approach to specializing the full distributional vocabulary. Our adversarial post-specialization method propagates the external lexical knowledge to the full distributional space. We exploit words seen in the resources as training examples for learning a global specialization function. This function is learned by combining a standard L2-distance loss with a adversarial loss: the adversarial component produces more realistic output vectors. We show the effectiveness and robustness of the proposed method across three languages and on three tasks: word similarity, dialog state tracking, and lexical simplification. We report consistent improvements over distributional word vectors and vectors specialized by other state-of-the-art specialization frameworks. Finally, we also propose a cross-lingual transfer method for zero-shot specialization which successfully specializes a full target distributional space without any lexical knowledge in the target language and without any bilingual data

    Dialogue manager domain adaptation using Gaussian process reinforcement learning

    Get PDF
    Spoken dialogue systems allow humans to interact with machines using natural speech. As such, they have many benefits. By using speech as the primary communication medium, a computer interface can facilitate swift, human-like acquisition of information. In recent years, speech interfaces have become ever more popular, as is evident from the rise of personal assistants such as Siri, Google Now, Cortana and Amazon Alexa. Recently, data-driven machine learning methods have been applied to dialogue modelling and the results achieved for limited-domain applications are comparable to or outperform traditional approaches. Methods based on Gaussian processes are particularly effective as they enable good models to be estimated from limited training data. Furthermore, they provide an explicit estimate of the uncertainty which is particularly useful for reinforcement learning. This article explores the additional steps that are necessary to extend these methods to model multiple dialogue domains. We show that Gaussian process reinforcement learning is an elegant framework that naturally supports a range of methods, including prior knowledge, Bayesian committee machines and multi-agent learning, for facilitating extensible and adaptable dialogue systems.Engineering and Physical Sciences Research Council (Grant ID: EP/M018946/1 ”Open Domain Statistical Spoken Dialogue Systems”

    Multi-domain neural network language generation for spoken dialogue systems

    Get PDF
    Moving from limited-domain natural language generation (NLG) to open domain is difficult because the number of semantic input combinations grows exponentially with the number of domains. Therefore, it is important to leverage existing resources and exploit similarities between domains to facilitate domain adaptation. In this paper, we propose a procedure to train multi-domain, Recurrent Neural Network-based (RNN) language generators via multiple adaptation steps. In this procedure, a model is first trained on counterfeited data synthesised from an out-of-domain dataset, and then fine tuned on a small set of in-domain utterances with a discriminative objective function. Corpus-based evaluation results show that the proposed procedure can achieve competitive performance in terms of BLEU score and slot error rate while significantly reducing the data needed to train generators in new, unseen domains. In subjective testing, human judges confirm that the procedure greatly improves generator performance when only a small amount of data is available in the domain.Toshiba Research Europe Ltd.This is the accepted manuscript. It is currently embargoed pending publication

    Specialising Word Vectors for Lexical Entailment

    No full text
    We present LEAR (Lexical Entailment Attract-Repel), a novel post-processing method that transforms any input word vector space to emphasise the asymmetric relation of lexical entailment (LE), also known as the IS-A or hyponymy-hypernymy relation. By injecting external linguistic constraints (e.g., WordNet links) into the initial vector space, the LE specialisation procedure brings true hyponymy-hypernymy pairs closer together in the transformed Euclidean space. The proposed asymmetric distance measure adjusts the norms of word vectors to reflect the actual WordNet-style hierarchy of concepts. Simultaneously, a joint objective enforces semantic similarity using the symmetric cosine distance, yielding a vector space specialised for both lexical relations at once. LEAR specialisation achieves state-of-the-art performance in the tasks of hypernymy directionality, hypernymy detection, and graded lexical entailment, demonstrating the effectiveness and robustness of the proposed asymmetric specialisation model

    Post-Specialisation: Retrofitting Vectors of Words Unseen in Lexical Resources

    No full text
    Word vector specialisation (also known as retrofitting) is a portable, light-weight approach to fine-tuning arbitrary distributional word vector spaces by injecting external knowledge from rich lexical resources such as WordNet. By design, these post-processing methods only update the vectors of words occurring in external lexicons, leaving the representations of all unseen words intact. In this paper, we show that constraint-driven vector space specialisation can be extended to unseen words. We propose a novel post-specialisation method that: a) preserves the useful linguistic knowledge for seen words; while b) propagating this external signal to unseen words in order to improve their vector representations as well. Our post-specialisation approach explicits a non-linear specialisation function in the form of a deep neural network by learning to predict specialised vectors from their original distributional counterparts. The learned function is then used to specialise vectors of unseen words. This approach, applicable to any post-processing model, yields considerable gains over the initial specialisation models both in intrinsic word similarity tasks, and in two downstream tasks: dialogue state tracking and lexical text simplification. The positive effects persist across three languages, demonstrating the importance of specialising the full vocabulary of distributional word vector spaces

    Semantically conditioned lstm-based Natural language generation for spoken dialogue systems

    No full text
    Natural language generation (NLG) is a critical component of spoken dialogue and it has a significant impact both on usability and perceived quality. Most NLG systems in common use employ rules and heuristics and tend to generate rigid and stylised responses without the natural variation of human language. They are also not easily scaled to systems covering multiple domains and languages. This paper presents a statistical language generator based on a semantically controlled Long Short-term Memory (LSTM) structure. The LSTM generator can learn from unaligned data by jointly optimising sentence planning and surface realisation using a simple cross entropy training criterion, and language variation can be easily achieved by sampling from output candidates. With fewer heuristics, an objective evaluation in two differing test domains showed the proposed method improved performance compared to previous methods. Human judges scored the LSTM system higher on informativeness and naturalness and overall preferred it to the other systems.
    corecore